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We study the finite temperature properties of the extended Bose-Hubbard model on a cubic lattice. This
model exhibits the so-called supersolid state. To start with, we investigate the ground-state phase diagram and
find the supersolid state in the region of underdoped (less than the half-filled) density in contrast to the cases
of one- and two-dimensional systems where the superfluid state and the solid state show the phase separation.
Next, we investigate ordering processes at finite temperatures by quantum Monte Carlo simulations and find
successive superfluid and solid phase transitions. There, we find that the two order parameters compete with
each other. We establish a finite temperature phase diagram, which contains the superfluid, the solid, the
supersolid, and the disordered phases. We develop a mean-field theory to analyze the ordering processes and
compare the result with that obtained by simulations and discuss the mechanism of the competition of these
two orders. We also study how the supersolid region shrinks as the on-site repulsion becomes strong.
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I. INTRODUCTION

The supersolid state is an interesting state of matter which
has both solid and superfluid properties. The solid state is
characterized by the breaking of translational symmetry and
the superfluid state is characterized by the breaking of U(1)
symmetry of the phase of macroscopic wave function. Thus,
the simultaneous breaking of these two symmetries indicates
that there is a flow component in solid. The possibility of the
supersolid was first discussed by Penrose and Onsager.!
Since then, various studies on supersolid have been con-
ducted from both experimental and theoretical points of
view.

As to observation of supersolid, Leggett® suggested that
nonclassical rotational inertia (NCRI) would be available to
detect supersolid in rotating solid “He. Recently, Kim and
Chan? reported that they found NCRI in solid “He. Although
it has been pointed out that the observed NCRI may not be
due to the supersolid but due to the grain boundaries between
polycrystals,* the topic, however, still attracts researchers’
interest.

The possibility of supersolid on lattice models has been
discussed actively. Andreev and Lifshitz’ suggested that the
delocalization of the vacancies in crystal causes a mass flow.
Matsuda and Tsuneto® studied the ground state of the hard-
core Bose-Hubbard model using mean-field theory and they
showed that the supersolid is possible when the interaction of
particles has frustration. Numerically, it is shown that the
hardcore Bose-Hubbard model on a trlar;gular lattice has the
supersolid phase, which shows a 3 X 3 structure and a fi-
nite superfluid fraction simultaneously.”!! Other frustrated
lattices have been also studied'>!? and they show the super-
solid state.

Recently, it has been pointed out that the supersolid state
can be realized even on nonfrustrated lattices if double oc-
cupancy of the particles is allowed.'* In the case of a square
lattice, the supersolid is found in the ground state when the
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number density of particle is more than that of the half-filled
case (p>1/2)."* The supersolid state in this density region is
considered to be the delocalization state of the additional
particles on the p=1/2 checkerboard solid. On the contrary,
in the underdoped density region (p<<1/2), the system
shows a phase separation of the superfluid state and the solid
state and the supersolid phase does not exist in one- and
two-dimensional systems.'* In the mean-field theory, how-
ever, the supersolid phase exists also in this region. In the
present paper, first we investigate the existence of the super-
solid phase in the underdoped density region by a quantum
Monte Carlo method [the stochastic series-expansion (SSE)
method'>!] and confirm that it indeed exists in the three-
dimensional case.

So far, no direct study has been done on finite temperature
properties of supersolid problem in the extended Bose-
Hubbard model. It is an interesting problem to study how the
orders of the superfluid and of the solid appear at finite tem-
peratures when the system has the supersolid state in the
ground state. In the model, the hopping term causes the su-
perfluid order and the nearest-neighbor repulsive interaction
tends to form the solid order. These orders compete with
each other, and in the hardcore limit, these orders cannot be
realized simultaneously. In the present paper, we investigate
ordering processes of superfluid and solid at finite tempera-
tures in the soft-core extended Bose-Hubbard model on a
cubic lattice using SSE method. We establish a phase dia-
gram of superfluid, normal solid, disordered state, and super-
solid. We also study the finite temperature dependence of the
orders by making use of mean-field (MF) analysis and com-
pare the result to that obtained by SSE. They show qualita-
tively good agreement. Moreover, the competition of the
solid and superfluid orders is discussed using Ginzburg-
Landau free energy. Finally, we study effects of on-site re-
pulsion U on the coexistence of the two orders. We find how
the supersolid region at finite temperature shrinks as U be-
comes large.
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II. MODEL

We analyze the extended Bose-Hubbard Hamiltonian on a
cubic lattice

H=-1, (ajaj + aia}) +V>, nin;
Cij) (ij)

+%U2 ni(ni= 1) = p 2 nj, (1)

where a] and q; are the creation and annihilation operators of
a boson ([a,-,aj-]:&,-j) and nizaiTai. The parameter ¢ denotes
the hopping matrix element, U and V are the on-site and
nearest-neighbor repulsions, respectively, and u is the
chemical potential. The notation (ij) means the sum over the
nearest-neighbor pairs. The system size is N=L3, where L is
the length of the system. The order parameter of the solid
state is

1 .
S = EE e’Q'(r./“rk)<njnk), (2)
jk

where Q=(7,,m) is the wave vector that represents the
staggered order. As for the order parameter of the superfluid
state, we adopt Bose-Einstein condensation fraction

1
Pi=0 = ]FE (ajay+aja) 3)
Jk

in the mean-field analysis, while in the SSE simulation we
adopt the superfluidity p, for the convenience of numerical
calculation. The expression of p, is given in Sec. III. Al-
though these two quantities are not the same, both of them
describe the off-diagonal long-range order (ODLRO) and are
considered to represent the same qualitative nature of the
superfluidity.

III. METHODS

We use the following two different methods to analyze
properties of the system.

A. Stochastic series expansion

We perform numerical simulation of the SSE, which was
invented by Sandvik.'>!% This method is one of quantum
Monte Carlo (QMC) simulations and has been successfully
applied for various quantum systems. In order to avoid the
clusterization due to diagonal frustration, we adopt the gen-
eralized directed loop algorithm.!” We use a package of
the Algorithms and Libraries for Physics Simulations
(ALPS).!®19 We adopt a simple-cubic lattice of N=L? sites
with periodic boundary conditions along all the lattice axes.
In the simulation, instead of the condensation fraction p;_g
[Eq. (3)], we calculate superfluidity p, using the winding
number W of world lines?*?!

%)
Ps= 380

(4)

where S is the inverse temperature.
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B. Mean-field approximation

We also analyze the ordering processes by the MF
approximation.?? In order to study the solid state, we use a
sublattice structure which is characterized by a staggered or-
der of the density. Here we adopt mean fields for the solid
order and superfluid order at sublattices A and B. The Hamil-
tonian for this MF is given by

HMF=HA+HB+C, (5)

U
Ha=—zt(a) +a,) g+ 2Vnymp + E'ZA(”A = 1) — uny,

(6)

Hp=- zt(aL +ap) pa+2Vnpmy + gnB(nB - 1) — ung,
(7)
C=2ztdpppg— 2Vmymg, (8)

where z(=6) is the number of nearest-neighbor sites. Here,
m, and my are the mean fields corresponding to the expec-
tation values of the number operators for A and B sites, re-
spectively,

my=(ny) and mp=(ng). )

Similarly, ¢, and ¢y correspond to the expectation values of
the annihilation operators for A and B sites, respectively,

ba= <aA> and ¢p= <03>~ (10)

Here, the expectation values are taken over the ground state
in the case of 7=0. In the finite temperature case, these rep-
resent the thermal averages.

H, (Hp) is a mean-field Hamiltonian at a site of the A (B)
sublattice. C is a correction term compensating the double
counting of the energy.

In the finite temperature case, the partition function and
the free energy are given by

Zyr = Tr(e P, (11)

1
FMFZ—EIH ZMF' (12)

In MF, m= (m,—myg)/2 denotes the order parameter of solid
and fulfill the relation S,=m?. Similarly, ¢= /(¢ + dp)/2
represents the order parameter of superfluid and fulfill the
relation, p;_o=2¢7, according to Eq. (3).

IV. GROUND-STATE PROPERTIES

Before analyzing properties at finite temperatures, let us
summarize the ground-state properties. As has been reported,
the system may have the supersolid phase in the ground state
when U takes a finite value.'*?® In Fig. 1, we show the
ground-state phase diagram in the coordinate of (¢/U,u/U)
obtained by MF method. As for the supersolid state in the
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FIG. 1. The ground-state phase diagram of the soft-core Bose-
Hubbard model for V=U/z obtained by MF. There are four phases:
NS, SS, SF, and MI. Characteristic points of the phase diagram are
denoted by the common symbols in Fig. 2: open rectangle, cross,
open downward triangle, open upward triangle, and open circle (see
text). Temperature dependence of order parameters calculated by
SSE is given in Fig. 5 at the positions denoted by solid circle, solid
triangle, and solid rectangle.

region of p>1/2, we may have a picture that additional
particles move on the commensurate solid structure. Let us
consider a solid in which the sublattice A is occupied. There,
effective potential energies for the additional particle on the
A and B sublattices are U and zV, respectively. In the case
V=U/z, the additional particles feel a flat potential and we
expect that the fluidity of the particle is mostly enhanced.
Indeed it is confirmed that the superfluidity takes maximum
value at this ratio.”* We adopt this ratio in the present study
except in the final part of Sec. V. This choice of the ratio,
however, does not cause qualitative change of the structure
of the phase diagram.

In Fig. 1, the solid line is the phase boundary obtained by
MF at T=0. This ground-state phase diagram agrees well
with that obtained by the Gutzwiller variational method by
van Otterlo er al.>® We find four different phases, i.e., Mott-
insulator (MI), normal solid (NS), superfluid (SF), and su-
persolid (SS). In addition to these four phases, a disordered
phase representing the normal liquid (NL) phase appears at
finite temperatures. We also study the ground states for sev-
eral parameter sets by SSE. For example, we find the solid
state for the set (¢/U=0.02,u/U=0.7) denoted by the solid
circle in Fig. 1, the superfluid state for (1/U=0.08,u/U
=0.7) by the solid rectangle, and the supersolid state for
(1/U=0.045,/U=0.7) by the solid triangle. The tempera-
ture dependences of order parameters on these points are
given in Sec. V in Figs. 5(a)-5(c).

In order to understand the phase diagram as a function of
the density p, we also give the phase diagram in the coordi-
nate of /U and p in Fig. 2. It is found that the normal solid
and Mott-insulator phases are realized at commensurate den-
sity, i.e., p=1/2 and p=1, respectively. In this coordination,
as well known, we have a domain denoted by PS which
denotes the phase separation of solid and superfluid.'* In
order to make the comparison of the two phase diagrams, we
plot some points in the phase diagrams with the same sym-
bols. For example, the end point of MI is plotted by an open
square in each phase diagram. Similarly, the end points of SS
and NS are plotted by a cross and an open downward tri-
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FIG. 2. The ground-state phase diagram in the coordinate of ¢/ U
and p for V=U/z. NS and MI are on the p=1/2 and p=1 lines,
respectively. Characteristic points of the phase diagram are denoted
by the common symbols in Fig. 1: open rectangle, cross, open
downward triangle, open upward triangle, and open circle (see the
text). In this coordinate, there appears a region of the PS for p
<1/2.

angle, respectively. The phase transition between SF and NS
is of the first order, which is manifested by the existence of
PS in Fig. 2.

Here, it should be noted on the problem of the existence
of the supersolid phase in the region of p<<1/2. The bound-
ary between PS and SS is not vertical. The end points of this
border are plotted by an open upward triangle and an open
circle. In Fig. 1, these two points are located very closely.
Between them, we find the first-order phase transition be-
tween SF and SS. Although this underdoped supersolid state
has been observed in the mean-field calculation,>>? the pres-
ence of this phase has been denied in one- and two-
dimensional systems by the studies of quantum Monte Carlo
method.'*?® Here we study this problem in three dimensions
using SSE.

We searched parameter sets in which the supersolid state
exists in the region of p<<1/2 and found that it really exists
in some region of parameter sets. In Fig. 3, we show the u
dependence of density and order parameters for ¢/ U=0.055.
At u/U=0.25, the order parameters of the solid and the su-
perfluid both remain finite, in contrast to the cases of the
phase separation where either of them disappears. In Fig. 4,
we show the size dependence of the solid and the superfluid
order parameters for t/U=0.055 and u/U=0.25. The two
order parameters converge to finite values keeping the den-
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FIG. 3. Dependence of order parameters and density on u for
(1/U=0.055,V=U/z). System sizes are L=10 and L=12.
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FIG. 4. The size dependence of the solid and the superfluid
order parameters for the parameter set (¢/U=0.055,u/U=0.25,V
=U/z) calculated by SSE. System sizes are from L=8 to L=16.
Dashed lines denote linear extrapolations of data points.

sity p<<1/2. Therefore we confirm the existence of the su-
persolid phase in the region of p<<1/2.

V. PHASE TRANSITIONS AT FINITE TEMPERATURES

Now, we study the ordered states at finite temperatures.
The phase transition between the normal liquid phase and the
solid phase is expected to belong to the universality class of
the Ising model because the phase transition occurs in the
spontaneous symmetry breaking of the order parameter with
the symmetry of Z,. On the other hand, the phase transition
of superfluid is expected to belong to the XY universality
class because the order parameter has the symmetry of U(1).
In this section, we study the temperature dependence of these
order parameters.

A. Stochastic series expansion

First, we show the results obtained by SSE. The simula-
tions were performed in the grand canonical ensemble using
a system sizes N=103 and N=123.

We plot the order parameters of solid, S, and that of
superfluid, p,, as a function of temperature for various values
of ¢. In Fig. 5(a), we show the transition from normal liquid
to normal solid for #/ U=0.02 in which only S, appears con-
tinuously. In the same way, the transition from normal liquid
to superfluid for #/U=0.08 is depicted in Fig. 5(b). For
t/U=0.045, the system shows successive transitions and the
supersolid state is realized at low temperatures. There, we
find that the solid order appears at a higher temperature [Fig.
5(c)]. Note that the solid order is suppressed when the super-
fluid order appears. Thus, we expected that the solid fraction
and the superfluid fraction compete with each other. It should
be noted that p, appears at higher temperature than the solid
order for ¢/ U=0.055 (not shown).

In Fig. 6, we depict a phase diagram in the coordinate of
(t/U, T/ U) for the fixed values V/U=1/z and u/U=0.7. The
transition temperatures of the solid state Ty _are plotted by
solid circles and those of the superfluid state T, are plotted
by open circles. To determine the transition temperatures for
each value of 7, we use the method of the Binder parameter27
of the systems with L=10 and 12. In Fig. 6, there are four
different phases: NL, NS, SF, and SS. These phases meet at a
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FIG. 5. Temperature dependence of order parameters obtained
by SSE (V=U/z). (a) (t/U=0.02, u/ U=0.7): normal liquid-normal
solid transition. (b) (¢/U=0.08, u/ U=0.7): normal liquid-superfluid
transition. (c) (#/U=0.045,u/U=0.7): normal liquid-normal solid
transition and normal solid-supersolid transition.

tetracritical point (7., T,). The competition of solid and super-
fluid orders is also found in the phase diagram (Fig. 6).
Namely, above 7., the transition temperature of solid is
smaller than that of smooth extension of TS,, from r<t,.
Therefore we conclude that Ts_ is suppressed from that of
the case in which the superfluid would not order. Similarly,
below ?., the transition temperature of superfluid is smaller
than that of the case in which the solid would not order.

B. Mean-field analysis

Here, we calculate the temperature dependence of order
parameters by making use of MF. In Fig. 7, we show the

094503-4



SUCCESSIVE PHASE TRANSITIONS AT FINITE...

0.25

‘ T by SSE .
NL TS bySSE o

02} Ps e

0.15

7

0.1 r

0.05

O 1 1 1
0.04 0.045 0.05 0.055 0.06

/U

FIG. 6. The #-T phase diagram for V/U=1/z and u/U=0.7
obtained by SSE. The transition temperatures of the solid state Ts_
are plotted by solid circles and those of the superfluid state 7, are
plotted by open circles. The lines connect the data points for the
guide to the eyes.

successive transitions of superfluid and solid for (#/U
=0.045, 1/ U=0.7). As was seen in the SSE simulation, here
we find again the suppression of the solid order by the su-
perfluid fraction. Namely, S, has a cusp at the superfluid
transition point. We also depict the phase diagram and com-
pare that to that of SSE (Fig. 8). They show a qualitatively
good agreement, e.g., there is the tetracritical point (¢.,7,)
and the critical temperatures TS and T, are suppressed by
appearance of the other order as mentloned before.

Let us study the competition between the solid and super-
fluid orders by analyzing the Ginzburg Landau (GL) free
energy. Since the order parameters m and ¢ take small value
in the vicinity of the tetracritical point, the GL free energy is
expressed as

F=am?+bm* + c¢* + d* + hm*§*. (13)

When a becomes zero at TSW[a:aO(T— TSﬂ)] with a positive
b, the second-order transition between the normal solid and
normal liquid phases takes place, and similarly when ¢ be-
comes zero at T,[c=co(T-T,)] with a positive d, the
second-order transition between the superfluid and normal
liquid phases takes place. The fifth term represents the com-
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FIG. 7. Temperature dependence of order parameters for V/U
=1/z, t/U=0.045, and w/U=0.7 obtained by MF. Solid line de-
notes the solid order parameter and the dashed line denotes the
superfluid order parameter.
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FIG. 8. The #-T phase diagram for V/U=1/z and w/U=0.7
obtained by MF. The transition temperature of the solid state Ty, is
denoted by the thick solid line and that of the superfluid state T )
denoted by the thick dashed line. We also depict the phase diagram
(solid and open circles) obtained by SSE (Fig. 6) for comparison.

petition between the solid and the superfluid order. If &
equals zero, the transition of the solid phase and that of su-
perfluid take place independently at Ts_ and T,, respectively.

If 1 is positive, the presence of the superfluid order lowers
the transition temperature of solid. Below the 7., the solid
order emerges first as temperature decreases. Then, the su-
perfluid order appears at the modified transition temperature
Ti,% which is smaller than the original one

aoh/szQ

T <T, —-————
1- aoh/szO

o, <Tp = (TSW - TPs) <T,. (14)
In the same way, the solid order lowers the transition tem-
perature of superfluid. The decrease of the transition tem-
peratures becomes large when & becomes large and this
means the shrinkage of the supersolid region. Thus, 4 repre-
sents the competition between the solid and the superfluid
orders.

As a final part of this section, we discuss the effect of
on-site repulsion on the coexistence of solid and superfluid
orders. As has been mentioned, the SS phase does not exist
in the ground-state u-t phase diagram for the hardcore case
which corresponds to the limiting case of infinite U. There-
fore we expect that the supersolidity is suppressed when the
on site repulsion U becomes large. We depict the ¢-T phase
diagram for various values of U in Fig. 9 obtained by MF.
Here, we use zV as the unit of energy instead of U because
now we want to study the effect of U. In Fig. 9, we find that
the SS region becomes narrower as U increases. Finally, the
supersolid region disappears completely in the hardcore limit
U— o, where a first-order transition between solid and su-
perfluid phases takes place. Thus, we conclude that U, i.e.,
the hardness of the particle, suppresses the coexistence of the
two orders.

VI. DISCUSSION AND SUMMARY

We studied properties of supersolid state in three-
dimensional extended Bose-Hubbard model by using SSE
simulation and MF analysis. First we studied the ground-
state phase diagram. There we found the existence of super-
solid phase in the region of p<<1/2. We confirmed that this
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FIG. 9. The dependence of finite temperature phase diagrams on
U obtained by MF for a fixed value of wu/zV=0.7. (a) U/zV=1, (b)
U/zV=10/6, (c) U/zV=100/6, and (d) hardcore (U/zV=0°).

phase exists in three-dimensional systems in contrast to the
cases of one- and two-dimensional cases. Next we studied
the properties at finite temperatures. When the system has the
supersolid phase in the ground state, the superfluid and solid
orders appear successively when the temperature decreases.
The strong hopping term (large ) favors the superfluid and
the superfluid phase appears at higher temperature in the
large t region. On the other hand, in the small ¢ region, the
normal solid phase appears first. In both cases we find that
the orders of superfluid and solid appear at different tempera-
tures, i.e., successive phase transitions. We find a phase dia-
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gram with a tetracritical point and studied the competition
between the solid and superfluid orders. By analyzing the
dependence of the phase diagram on the on-site repulsion U
in particular near the tetracritical point, we find that larger U
enhances the competition between two orders and causes the
shrinkage of the supersolid region. It would help us to un-
derstand how the softness of particles contributes to the re-
alization of the supersolid.

Possibility of realization of the supersolid state on the
optical lattice has been discussed recently. The realization of
the Bose-Hubbard model in the optical lattice has been
discussed.”® For realization of the supersolid state, the
nearest-neighbor repulsive interaction V plays an important
role. Mazzarella et al.?® discussed how to introduce the
nearest-neighbor interaction. We expect that the parameters
of the system can be widely controlled in the optical lattice
and there the properties of the phase diagram obtained in this
paper will be observed.
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